
w
w

w
.a

rt
el

ys
.c

om

AMPL is a comprehensive and powerful algebraic modeling language
for linear and nonlinear optimization problems, with discrete or
continuous variables.

AMPL: A Modeling Language for
Mathematical Programming

Concise language using common notation and familiar concepts for modeling
and solution analysis

Ideal for rapid prototyping and efficient use in production

Seamlessly connects to many solvers

Best-in-class model presolver and automatic differentiator

Develop faster than ever with AMPL...
 and focus on your real business problem!

AMPL’s flexibility and convenience make it ideal for rapid prototyping and model development, while
its speed and control options make it an efficient choice for repeated production runs.

Key features
 ■ Broad support for sets and set operators:

 - tuples, ordered/circular sets, indexing sets
 - union, intersections, Cartesian products
 ■ General and natural syntax for many problem classes
 ■ Automatic data check using input data constraints
 ■ Advanced nonlinear solver support: initial primal and dual values,
automatic differentiation and elimination of «defined»variables,
user-defined functionsAutomatic data check using input data
constraints

 ■ Easy connection to data sources such as text files, Excel, or SQL
databases

 ■ Extended scientific function library

OPERATING SYSTEMS

macOSWindows

Linux

AMPL Book available online
www.artelys.com/en/composants-
 numeriques/ampl

 Try AMPL for free
www.artelys.com/en/composants-
numeriques/ampl

Problem classes handled by AMPL
 ■ Standard mathematical programming problems (LP, QP, MIP, NLP, MINLP)

 ■ Problems with logic constraints

 ■ Problems with complementarity constraints (MPEC, MPCC, MCP)

 ■ Problems with piecewise linear functions

 ■ Network problems expressed using nodes and arcs concepts

 ■ LP problems expressed in matrix form

var x{I} >= 0 <= 1; var y binary;
minimize Cost: sum{(i,j) in I cross I} c[i,j]*x[i]*x[j] + f*y;
subject to BigM: sum{i in I} a[i]*x[i] >= b - M*y;

var x{I} >= 0 <= 1; var y binary;
minimize Cost: sum{(i,j) in I cross I} c[i,j]*x[i]*x[j] + f*y;
subject to Logic: y = 0 ==> sum{i in I} a[i]*x[i] >= b;

var x{I} >= 0 <= 1; var y >= 0 <= 1; var slack;
minimize Cost: sum{(i,j) in I cross I} c[i,j]*x[i]*x[j] + f*y;
subject to Linear: sum{i in I} a[i]*x[i] + slack >= b;
subject to Compl: 0 <= slack complements (1-y) >= 0;

var x{I} >= 0 <= 1; var y binary;
minimize Cost: f*y +
 sum{(i,j) in I cross I} << 0.5; 0.5*c[i,j], 1.5*c[i,j] >> x[i]*x[j];
subject to BigM: sum{i in I} a[i]*x[i] >= b - M*y;

Artelys Canada
3 Place Ville-Marie, Suite 400

H3B 2E3 Montréal (QC) - Canada
+1 438 239 7736

Artelys USA
150 N. Michigan, Suite 800

Chicago, IL 60601 - USA
+1 (312) 588-3376

Artelys France
81 rue Saint-Lazare

75009 Paris - France
+33 (0)1 44 77 89 00

Artelys distributes and supports AMPL
worldwide.
Developped by AMPL Optimization LLC.

Classic big-M formulation

Logic constraint formulation
with no big-M constants

Complementarity formulation
with no binary variables

Piecewise linear functions

