
A T&T
Bell Laboratories

Numerical Analysis Manuscript 91–05

Automatic Differentiation of Nonlinear AMPL Models

David M. Gay

August 22, 1991

Automatic Differentiation of Nonlinear AMPL Models

David M. Gay∗

Abstract. We describe favorable experience with automatic differentiation of mathematical pro-

gramming problems expressed in AMPL, a modeling language for mathematical programming. Nonlinear

expressions are translated to loop-free code, which makes analytically correct gradients and Jacobians par-

ticularly easy to compute — static storage allocation suffices. The nonlinear expressions may either be

interpreted or, to gain some execution speed, converted to Fortran or C.

1. Introduction. Modeling languages for mathematical programming aim to expedite the
task of giving an optimization problem to a solver. For nonlinear problems, this task generally
includes providing derivatives to the solver. This note reports favorable experience with auto-
matic differentiation to compute derivatives of problems expressed in the AMPL modeling lan-
guage [8].

Our recent paper [8] provides much more discussion of modeling languages in general and
of AMPL in particular than space would permit here. Although that paper deals mostly with lin-
ear problems, its concerns remain valid for nonlinear problems.

It is often convenient to work with a class of optimization problems parameterized by cer-
tain parameters and sets (which themselves are often used to compute other parameters and sets);
we call such a class of problems a model. We obtain a particular problem — an instance of a
model — by associating with the model data that define the parameters and sets which are used
but not defined in the model.

2. Maximal n-gon example. It is helpful to see an example of a nonlinear problem. Con-
sider the problem of finding a planar n-gon of maximal area inscribed in a circle of diameter 1.
For odd n, the regular n-gon is known to solve this problem, but for even n, one can do better than
the regular n-gon. The solution for even n > 4 is rigorously known only for n = 6: see [12].

Figure 1 shows an AMPL model for the maximal n-gon problem (derived from a GAMS [2]
model of Francisco J. Prieto). The model illustrates several aspects of AMPL. It involves one
free parameter, n, the number of sides in the n-gon. To get a particular problem (an instance of
the model), we would specify a value for n; to get the maximum hexagon problem, for example,

∗AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974-0636; dmg@research.att.com .

August 22, 1991

- 2 -

Maximum area for polygon of N sides.
After a GAMS model by Francisco J. Prieto.

param n integer > 0;
set I := 1..n;

param pi := 4*atan(1);

var rho{i in I} <= 1, >= 0 # polar radius
:= 4*i*(n + 1 - i)/(n+1)**2;

var theta{i in I} >= 0 # polar angle
:= pi*i/n;

inscribe{i in I, j in i+1 .. n}:
rho[i]**2 + rho[j]**2

- 2*rho[i]*rho[j]*cos(theta[j] - theta[i])
<= 1;

increasing{i in 2..n}: theta[i] >= theta[i-1];

fix_theta: theta[n] = pi;
fix_rho: rho[n] = 0;

maximize area: .5*sum{i in 2..n}
rho[i]*rho[i-1]*sin(theta[i]-theta[i-1]);

FIG. 1. AMPL model for maximum n-gon problem.

we would specify

data;
param n := 6;

Comments start with # and extend to the end of the line. The statement

param I := 1..n;

defines I to be the set { 1 , 2 , . . . , n}. The statement

param pi := 4*atan(1);

defines pi to be the machine approximation to π = 4.tan − 1 (1). The model expresses vertices
of the n-gon in polar coordinates, say (ρ i ,θ i), represented by the variables rho and theta, both
of which are subscripted by elements of set I. Square brackets surround subscripts, so, e.g.,
rho[i] denotes ρ i . The declaration (i.e., var statement) for rho specifies upper and lower
bounds (1 and 0) and, in the := clause, an initial guess; the indexing expression {i in I} in
the declaration specifies that i is a dummy variable running over I. Indexing expressions always
have a scope; in the declaration of rho, the scope of i extends over the whole statement, and i
participates in specifying the initial guess for rho[i]. The statement that begins

inscribe{i in I, j in i+1 .. n}:

defines a family of constraints that keeps each pair of points Euclidean distance at most 1 apart;
‘‘inscribe’’ is the (arbitrarily chosen) name of the constraint family, and once the problem has
been solved, inscribe[i,j] denotes the dual variable (i.e., Lagrange multiplier) associated
with constraint inscribe[i,j]. Similarly, increasing is a family of constraints that
force the polar angles to be monotone increasing. The constraints fix_theta and fix_rho

August 22, 1991

- 3 -

serve to remove two unnecessary degrees of freedom by specifying the values of theta[n] and
rho[n]; these constraints are not seen by the solver, since they are removed from the problem
by AMPL’s ‘‘presolve’’ phase (see [8]). Finally, the statement that begins ‘‘maximize
area:’’ specifies the objective function, which involves a summation.

Fig. 2 depicts the solutions found by MINOS [18, 19, 20] version 5.3 for n = 6 and 8, and it
lists the areas of the corresponding regular n-gons.

n = 6
area = 0.674981

regular area = 0.649519

n = 8
area = 0.726868

regular area = 0.707107

FIG. 2. Solutions computed by MINOS 5.3.

3. Translated problem representation. The AMPL translator communicates with solvers
by writing and reading files. For instance, for use with MINOS, it writes the following files
(when told to use stub ‘‘foo’’ in constructing file names):

Name Meaning

foo.mps MPS file (for linear constraints and objectives)
foo.spc SPECS file (for specifying options)
foo.row AMPL constraint names (for solution report)
foo.col AMPL variable names (again for solution report)
foo.nl nonlinear expressions (discussed below)
foo.fix variables fixed by presolve
foo.slc constraints eliminated by presolve
foo.unv variables declared but not used
foo.adj constant to be added to objective function

The MPS file encodes a description of linear constraints and objectives in a format that many lin-
ear programming solvers understand; see, e.g., [17, chapter 9].

The .nl file encodes nonlinear constraints and objectives in a Polish prefix form that is
easy to read and manipulate. For example, for the maximal hexagon problem, the description of
constraint inscribe[1,2], including debugging comments that start with #, is

August 22, 1991

- 4 -

C0 #inscribe[1,2]
o54 #sumlist
3
o5 #ˆ
v0 #rho[1]
n2
o5 #ˆ
v1 #rho[2]
n2
o16 #-
o2 #*
o2 #*
o2 #*
n2
v0 #rho[1]
v1 #rho[2]
o46 #cos
o1 # -
v6 #theta[2]
v5 #theta[1]

Lines that start with o denote operations; such lines are followed by their operands. Lines that
start with v are references to variables, and lines that start with n give numeric constants.
Toward its end, the .nl file also tells which elements of the constraints’ Jacobian matrix are
nonzero and simultaneously provides coefficients for variables that appear linearly in the nonlin-
ear constraints. A more thorough discussion of .nl files will have to be given in another paper.

There are at least two ways to use a .nl file. A solver can read it directly to construct
expression graphs, and can walk the graphs to compute, e.g., function and derivative values.
Alternatively, the .nl file can be translated to a convenient programming language, such as For-
tran or C, then compiled and linked to a solver. Although this takes longer to set up, it generally
leads to faster function and gradient evaluations. We report experience with both of these
approaches below.

4. Automatic differentiation. Efficient nonlinear optimization routines (solvers) need
‘‘good’’ gradient approximations. Conventionally, people often find it easiest to approximate the
requisite gradients by computing finite differences, but finite differences sometimes have draw-
backs. Some problems are sufficiently nonlinear that straightforward finite difference approxima-
tions are too inaccurate. Some functions involve conditionals (e.g., if ... then ... else expressions)
and thus have places where their gradients or even their function values are discontinuous;
piecewise-linear terms, such as the absolute-value function, are perhaps the simplest examples,
but much more elaborate examples also occur, such as functions whose evaluation uses adaptive
quadrature or an adaptive differential equation solver. A solver that expects to deal with continu-
ously differentiable functions may successfully cope with a problem that has discontinuities if the
solution lies away from the discontinuities, but finite-difference approximations spoiled by dis-
continuities can lead it to fail. Finally, computation time sometimes matters, and the alternative
gradient computations discussed below are sometimes much faster than finite differences.

Symbolic differentiation is a familiar technique, taught in calculus courses. Given an alge-
braic f (x), one derives an expression for the gradient ∇ f (x), which one subsequently evaluates to
get numerical gradient approximations. On a computer, this yields an ‘‘analytically correct’’
approximation to ∇ f (x), i.e., one that is marred, at most, by roundoff errors.

Symbolic differentiation can be useful, but it is not the only way of computing analytically
correct gradient approximations. ‘‘Automatic differentiation’’ (henceforth AD) also does this job
and is sometimes more convenient or more efficient than straightforward symbolic differentiation.

August 22, 1991

- 5 -

AD has been reinvented many times: see Griewank’s survey [13].
AD proceeds by computing numerical values for the partial derivatives of each operation

with respect to its operands and combining these partial derivatives by the chain rule. Two kinds
of AD are of interest: ‘‘forward’’ and ‘‘backward’’. Forward AD recurs partial derivatives with
respect to input variables; backward AD recurs partial derivatives (sometimes called adjoints) of
the final result with respect to the result of each operation. With forward AD, one can recur
derivatives of arbitrarily high degree in one pass. Backward AD is more complicated, in that one
must propagate derivative information from the final result back to the original independent vari-
ables, one derivative at a time (as discussed below in more detail). But for computing first
derivatives, backward AD is sometimes faster than forward AD (or evaluation of straightfor-
wardly computed symbolic derivatives). Indeed, as various authors point out, with backward AD
we can compute a function and its gradient in at most a multiple of the time needed to compute
just the function. As Griewank [13] shows, it is easy to find examples where computing analyti-
cally correct approximations of f (x) and ∇ f (x) takes O(n) operations if we use backward AD
and O(n 2) operations if we use forward AD or straightforward symbolic differentiation.

Backward AD is particularly well suited to computing the first derivatives needed by many
nonlinear optimization solvers; it automatically exploits sparsity and, in my experience, is conve-
nient and reasonably efficient. Before relating this experience, I need to describe the mechanics
of backward AD in more detail.

Suppose we wish to compute f (x) and ∇ f (x), where f : I Rn → I R. In general, we can
decompose the computation of f into a sequence of k function evaluations, henceforth called
operations, which may be elementary arithmetic operations or general function evaluations. Thus
we may consider the evaluation of f to proceed as follows. For notational convenience, let
v i = x i , 1 ≤ i ≤ n. Then for i = n + 1 , . . . , n + k, we compute

v i : = o i (v 1 , v 2 , . . . , v i − 1) ,

which yields f (x) = v n + k . Typical operations o i depend on just one or two of the previously
computed v j , but sometimes it is convenient to regard as an operation a function evaluation that
involves several v j . Indeed, when computing a Jacobian matrix for constraints, two or more of
which share a common subexpression, it is sometimes efficient to treat the common subexpres-
sion as a single operation; following Speelpenning [21, p. 42], we call such an operation a funnel.
As explained below, it is convenient to treat conditional common expressions as funnels. In gen-
eral, use of funnels amounts to mixing forward and backward gradient accumulation.

Consider operation o k and suppose for some > k and m > k that operations o and o m

depend on the result v k of o k . As far as o k is concerned, we may regard f as having the form
f (o (o k) , o m (o k)); then the chain rule implies

∂o k

∂ f_ ___ =
∂o
∂ f_ ___ ×

∂o k

∂o_ ___ +
∂o m

∂ f_ ____ ×
∂o k

∂o m_ ____ ,

so once we know the adjoints
∂o
∂ f_ ___ and

∂o m

∂ f_ ____ (and the partial derivatives
∂o k

∂o_ ___ and
∂o k

∂o m_ ____), we

can compute the adjoint
∂o k

∂ f_ ___ of o k . Similarly, if o k in turn depends directly on v j , then o k con-

tributes
∂o k

∂ f_ ___ ×
∂o j

∂o k_ ___ to the adjoint of o j . Thus to propagate adjoints (derivatives), it is conve-

nient to visit the operations in reverse order, so that when we visit an operation, we have already
computed its adjoint and can compute its contribution to the adjoints of the operations on which it
directly depends. Propagation of adjoints thus reduces to a sequence of multiplications and addi-
tions or assignments.

August 22, 1991

- 6 -

Although it is convenient to visit the operations in the reverse order of their evaluation to
propagate adjoints backwards, many other orders of visitation are possible. It is only necessary
that an operation have received all contributions to its adjoint before it starts contributing to the
adjoints of its predecessors. Thus there is much opportunity to schedule adjoint propagation in
ways that are somehow efficient, e.g., that minimize memory bank conflicts or reduce cache
misses. Unfortunately, the ‘‘best’’ scheduling strategy is machine-dependent. In the computing
reported below, I simply propagate adjoints in straightforward reverse order.

5. Implementation. One can arrange for several adjoints to share the same storage;
ADOL-C [14], for example, does this. In hopes of gaining some speed (in trade for a relatively
modest amount of memory), in the computing reported below I use a separate memory cell for
each adjoint when computing the gradient of a particular constraint (or the objective); I compute
the constraint gradients one at a time, and use the same adjoint scratch vector for each gradient
computation. My computing involves ‘‘interpreted’’ and compiled representations of the objec-
tive and constraints. To make the interpreted version fast, one must avoid burdening it with
unnecessary tests. When propagating adjoints, for example, one could arrange that the first (and
often only) contribution to an adjoint be a simple assignment to the adjoint’s cell, and that only
the second and subsequent contributions be additions to the value in the cell. However, this
would entail distinguishing between first and subsequent contributions, which would require a
test or an indexed branch. Instead, I simply zero all the adjoint cells, then add all adjoint contri-
butions to the cells. Specifically, the adjoint propagation loop is equivalent to the C code in Fig.
3.

struct derp {
struct derp *next;
double *a, *b, *c;
};

void derprop(register struct derp *d)
{

*d->b = 1;
do *d->a += *d->b * *d->c;

while(d = d->next);
}

FIG. 3. C for propagating adjoints (derivatives).

When reading each operation, the subroutine for reading a nonlinear expressions (.nl) file sim-
ply builds one derp structure for each multiply/add pair needed to propagate adjoints. In this
structure, a points to the target adjoint, b to the source adjoint, and c to the relevant partial
derivative value. To propagate adjoints, I use the standard library routine memset to zero the
adjoint cells, then invoke derprop.

The compiled version of function and gradient evaluation largely mimics the interpreted
version. In particular, it also zeros all the adjoint cells, then adds contributions to them. Of
course, the compiled version would be faster if it avoided the initial adjoint zeroing and assigned
rather than added the first contribution to each adjoint; it would then be reasonable for it to use
the same cell for several adjoints. How much faster this would make the compiled version
remains to be seen.

To save function evaluation time, I try to minimize conditional branches per arithmetic
operation. Therefore I use one function invocation per elementary operation. For example, the C
code for f_OPMULT, which implements multiplication, appears in Fig. 4.

The layout in Fig. 4 of the expr structure permits omitting the end of it for unary opera-
tions. The functions that implement operations all have the same calling sequence as

August 22, 1991

- 7 -

struct expr {
double (*op)(struct expr *);
int a; /* subscript of adjoint */
double dL; /* partial w.r.t. L */
struct expr *L, *R; /* operands */
double dR; /* partial w.r.t. R */
};

double f_OPMULT(register struct expr *e)
{

register struct expr *e1, *e2;
e1 = e->L;
e2 = e->R;
return (e->dR = e1->op(e1)) * (e->dL = e2->op(e2));
}

FIG. 4. C for multiplication.

f_OPMULT: the single argument points to a structure that contains relevant information and stor-
age for partial derivatives. Notice that the return line evaluates the left and right operands,
stores their values in the relevant partial derivative cells, and computes the operation’s value.
(With some compilers, writing f_OPMULT this way — combining what could be written as three
statements into one — may save some register loads and stores; of course, for a suitably smart
optimizing compiler, this is not an issue. It appears to have little or no effect on the computing
reported below.)

Some operations, such as the min and max functions and AMPL’s general if ... then ...
else ... expressions, involve conditionals. The interpreted implementations of such operations
adjust pointers to insert the relevant chain of derp structures into the chain of derp structures
traversed in Fig. 3. The result is the usual one for AD: away from breakpoints (i.e., points in
whose every neighborhood more than one conditional outcome is possible), the computed deriva-
tive approximations are analytically correct; at breakpoints, they are analytically correct direc-
tional derivatives.

There is a complication when a conditional expression appears in a common subexpression
shared by two or more constraints. To facilitate zeroing the adjoint cells, it is convenient to make
them consecutive, which in general entails making copies of derp structures and using different
adjoint cells for the common expression in different constraints. To adjust pointers efficiently for
a conditional expression’s adjoint propagation, however, it is desirable to have just one copy of
the expression’s derp structures and adjoint cells. A convenient way to get by with just one
copy of the derp structures affected by a conditional common expression is to treat the expres-
sion as a funnel (i.e., as a single composite operation). This is how I handle conditional common
expressions in the computing reported below.

On the one hand, if a common expression is used by several other common expressions, it
may save time to treat the first common expression as a funnel — computing its gradient with
respect to its inputs before propagating gradient information for the other common expressions.
On the other hand, blindly following this strategy can turn an O(n) computation into an O(n 2)
computation. If gradients were to be computed sufficiently often, it would pay to choose the fun-
neling strategy by dynamic programming, but in general I do not know how to designate funnels
in a way that minimizes overall execution time. In the computing reported below, I keep track of
the inputs for each common expression, so long as there are not too many of them (no more than
5), and if two uses (in different constraints) of the expression would benefit from treating it as a
funnel, then I designate it as such. Adopting this strategy led to substantial speedups for the
Chebyquad problem discussed below.

August 22, 1991

- 8 -

6. Test results. Below I report timings on two machines. Bowell is a VAX 8550 with 128
megabytes of physical memory and 64 kilobytes of general cache, running a 10th Edition UNIX

system. Pyxis is an SGI 4D/240S with 128 megabytes of physical memory, two levels of cache,
25MHz MIPS R2000A/R3000 central processing units, and MIPS R2010A/R3010 floating-point
units, running IRIX System V Release 3.3.2. Each primary cache (one for data, one for instruc-
tions) on Pyxis has 16384 slots, each covering four bytes, but 64 bytes are read (filling 16 slots)
when a read request cannot be satisfied from the cache. (The computing reported below uses only
one CPU.) Compilation for Bowell was with -g (debugging mode) by a combination of the
native Fortran compiler, f 77 [6], and lcc [10], an experimental ANSI C compiler. Compilation
on Pyxis was by f 2c [5] and the native C compiler, cc, with -O (optimization enabled).

First we consider a small linearly constrained nonlinear programming problem, the Weapon
example described in [1, chapter 2] and[15, pp. 423–425]. In AMPL, the objective is written

var x{target, weapon} >= 0;
minimize zot:

sum{t in target} (u[t] * prod{w in weapon} q[t,w]ˆx[t,w] - u[t]);

Weapon involves 5 targets and 20 weapons, so there are 5×20 = 100 variables; both u and q are
parameters, i.e., constants. At first glance, all 100 variables appear to be nonlinear, but for 35
(t ,w) pairs the parameters q[t,w] are 1, so the exponentiation q[t,w]ˆx[t,w] =
q [t , w]x [t , w] is 1, independent of x[t,w]. Because the AMPL translator records these
variables as linear variables, whereas they are treated nonlinearly in the version of Weapon dis-
tributed with MINOS, MINOS winds up computing a different sequence of iterates for the AMPL
version of the problem than for the version in the MINOS distribution. Nonetheless, it is interest-
ing to see the times taken to solve the two versions.

Table 1 reports times, ratios and counts for solving Weapon three ways. The lines labeled
Fortran are for the version of Weapon that comes with MINOS, in which a Fortran subroutine
computes the objective function. The other lines are for the AMPL version of Weapon. Those
labeled m53 use the interpreted evaluation described above, and those labeled nlc use a C version
of the objective function derived from the nonlinear expressions (.nl) file that the AMPL trans-
lator writes. The program, nlc, that derives C or Fortran from a .nl file will be described else-
where. (Note that the relative columns in Table 1 give ratios of CPU seconds to Fortran CPU
seconds, computed before the CPU seconds were rounded to the values in the CPU seconds
columns.)

TABLE 1
Average times, ratios, and counts for Weapon.

_ ___
CPU seconds relative counts

FUNOBJ solve FUNOBJ solve iters NF_ ___
Bowell (VAX 8850):
Fortran 0.9 3.9 1.00 1.00 195 393
m53 2.3 4.9 2.51 1.25 171 323
nlc 1.6 4.2 1.74 1.07 174 335

Pyxis (SGI/MIPS):
Fortran 0.32 1.39 1.00 1.00 195 393
m53 0.56 1.42 1.76 1.02 171 323
nlc 0.46 1.39 1.45 1.06 174 334_ ___ 






























Table 1 suggests that interpreted evaluations are cheap enough to make them a reasonable

August 22, 1991

- 9 -

choice for some applications. Table 1 also shows that compiled (nlc) evaluations can be some-
what faster than interpreted ones. The times in Table 1 are averages of 10 repetitions of solving
the problem. Timing results vary from run to run on both machines, partly because of the granu-
larity of the timer and the short execution time. The FUNOBJ columns are for the total time to
evaluate the objective function and its gradient NF times, and the solve columns are for the total
time to solve the problem, excluding the time to read the problem in and write the solution out.
For the m53 rows, reading the .nl file took less than 2% of the solve time and less than 17% of
the time to read the linear constraint information.

Much of the time to evaluate Weapon’s objective is spent in the library routine that com-
putes the power function x y . For problems that only involve elementary arithmetic operations,
the ratio of interpreted to compiled evaluation times (m53 to nlc) is larger than it is for Weapon.
For example, Table 2 shows timings for solving another of Prieto’s maximal n-gon models that
only involves arithmetic operations. The FUNCON column is for evaluating the constraints and
their gradients; there are 25 nonlinear constraints and 48 variables in this problem, which corre-
sponds to n = 50 — Prieto’s second model reduces the problem size by assuming symmetry.

TABLE 2
Average times and ratios for Prieto’s second model, n = 50.

_ ___
CPU seconds relative

FUNCON FUNOBJ solve FUNCON FUNOBJ solve
Bowell:
m53 1.34 0.68 11.1 3.8 3.6 1.16
nlc 0.35 0.19 9.5 1.0 1.0 1.00

Pyxis:
m53 0.36 0.24 3.32 2.0 2.4 1.12
nlc 0.18 0.10 2.96 1.0 1.0 1.00_ ___ 
























In the nlc rows of Table 2, objective and constraint evaluations are by C derived from the .nl
file; times for corresponding Fortran would be similar.

ratio of
interpreted
to Fortran

times

n
FIG. 5. Protein-folding evaluation time ratios.

1

2

3

4

5

6

7

8

9

18 42 66 126 276 576 1716

f and ∇ f, Pyxis

f only, Pyxis

f and ∇ f, Bowell

f only, Bowell

For larger problems, the ratio of interpreted to hand-coded evaluation times can be

August 22, 1991

- 10 -

substantially larger than Tables 1 and 2 would suggest, particularly when the interpreted evalua-
tion suffers many cache misses. We first illustrate this with a set of protein-folding problems
involving alanine polypeptides. (See [3] for a description of the general protein-folding objective
function. Teresa Head-Gordon kindly provided hand-coded Fortran for this general objective and
data for the particular alanine polypeptide problems; I modified the Fortran slightly to make joint
computation of function and gradient more efficient.) The ‘‘real’’ problems involve 66, 126, 276,
576, 876, 1176, and 1716 variables (3 spatial coordinates per atom); to illustrate caching effects, I
created similar smaller problems involving 18, 24, 30, 42, and 48 variables by arbitrarily discard-
ing terms from the smallest ‘‘real’’ problem. Figure 5 shows ratios of interpreted to hand-coded
Fortran evaluation times. Figure 6 shows that the interpreted evaluations involved substantial
memory. The dashed ‘‘amax’’ line shows how many adjoint cells were used. These problems
involve many named common subexpressions, called ‘‘defined variables’’ in AMPL (a recent
extension). Because of funnels, there are fewer adjoint cells than derp structures, the number of
which is shown by the solid ‘‘derps’’ line. The dotted line shows the total bytes of problem-
dependent storage used. (As of this writing, nlc does not yet handle defined variables, so the
protein-folding and Chebyquad test results below do not mention nlc.)

n
FIG. 6. Protein folding (Pyxis) memory usage.

250

1000

10000

100000

1e+06

1e+07

1e+08

18 42 66 126 276 576 1716

.
..

bytes

derps
amax

In theory, backward automatic differentiation lets one compute function and gradient values
in time proportional to that for computing just the function. Figure 7 illustrates that the propor-
tionality constant is reasonably small, and for comparison, it also shows the ratio of function and
gradient evaluation time to function only evaluation for the hand-coded Fortran.

August 22, 1991

- 11 -

n
FIG. 7. Protein folding (Pyxis): ratios of f and ∇ f to f evaluation time.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

18 42 66 126 276 576 1716

ratio of
f, ∇ f

eval times
to f only Fortran

(hand-coded)

interpreted

The protein-folding problems heavily involve trigonometric functions and square roots.
Ratios of interpreted to hand-coded Fortran evaluation times are naturally larger for large calcula-
tions that only use elementary arithmetic. Figure 8 shows an AMPL model (courtesy of Bob
Fourer) for the Chebyquad [7, 16] nonlinear least-squares test problem. This simple model uses
defined variables T[i,j] to recur the value T i (x j) of the ith Chebyshev polynomial at variable
x j = x[j].

=======================================
CHEBYQUAD FUNCTION (argonne minpack #7)
=======================================

param n > 0;

var x {j in 1..n} := j/(n+1);

var T {i in 0..n, j in 1..n} =
if (i = 0) then 1
else if (i = 1) then 2*x[j] - 1
else 2 * (2*x[j]-1) * T[i-1,j] - T[i-2,j];

eqn {i in 1..n}: (1/n) * sum {j in 1..n} T[i,j]
= if (i mod 2 = 0) then 1/(1-iˆ2) else 0;

FIG. 8. AMPL model for Chebyquad.

A nonlinear least-squares solver can treat the equality constraints in Figure 8 as defining the
residual vector, the sum of the squares of whose components is to be minimized. For example,
we have arranged for using DN2G (the variant of NL2SOL [4] that appears in the third edition of
the PORT subroutine library [9]) to solve nonlinear least-squares problems expressed in AMPL.
We turn Figure 8 into a general minimization problem by replacing the eqn constraints with an
objective function:

minimize zot: sum{i in 1..n}
((1/n) * sum {j in 1..n} T[i,j] - if (i mod 2 = 0) then 1/(1-iˆ2)) ˆ 2;

As another illustration of using solvers with AMPL, we use SUMSOL [11] (known as DMNG in
PORT 3) to solve unconstrained optimization problems expressed in AMPL. Figures 9 and 10
show ratios of interpreted to hand-coded Fortran evaluation times for Chebyquad, with n ranging
from 5 to 50 in steps of 5. The hand-coded Fortran is that of Mor ́ e, Garbow, and Hillstrom [16].

August 22, 1991

- 12 -

ratio of
interpreted
to Fortran

times

n
FIG. 9. Chebyquad on Bowell.

nl2 = nonlinear least-squares
dmng = general unconstrained minimization

2

4

6

8

10

12

14

5 10 15 20 25 30 35 40 45 50

f and ∇ f, nl2

f only, nl2

f and ∇ f, dmng

f only, dmng

ratio of
interpreted
to Fortran

times

n
FIG. 10. Chebyquad on Pyxis.

nl2 = nonlinear least-squares
dmng = general unconstrained minimization

3

9

15

21

27

33

5 10 15 20 25 30 35 40 45 50

f and ∇ f, nl2

f only, nl2

f and ∇ f, dmng

f only, dmng

7. Conclusions. Automatic differentiation can be convenient to use in solvers for finite
dimensional nonlinear optimization problems. Many such problems have a primitive recursive
objective and constraints, i.e., in many such problems the objective and constraints can be evalu-
ated by a sequence of instructions with no backward branches. If sufficient memory is available,
one can use AD and the ‘‘interpreted’’ evaluation scheme sketched in §5 to compute the objec-
tive, constraints, and their analytically correct gradients, in time that may be competitive with
corresponding hand-coded evaluations. Whether this yields sufficiently fast evaluations depends
on the problem, machine, and one’s purpose. At any rate, AD is convenient to use for exploratory
modeling in conjunction with modeling languages like AMPL.

August 22, 1991

- 13 -

Acknowledgements. I thank Tanner Gay, Linda Kaufman, Brian Kernighan, Norm
Schryer, and the referees for helpful comments on the manuscript, and Margaret Wright for infor-
mation on the maximal n-gon example.

REFERENCES

[1] J. BRACKEN AND G. P. MCCORMICK, Selected Applications of Nonlinear Programming,
Wiley, 1968.

[2] A. BROOK, D. KENDRICK, AND A. MEERAUS, GAMS: A User’s Guide, Scientific Press,
Redwood City, CA, 1988.

[3] B. R. BROOKS, R. E. BRUCCOLERI, B. D. OLAFSON, D. J. STATES, S. SWAMINATHAN, AND

M. KARPLUS, ‘‘CHARMM: A Program for Macromolecular Energy, Minimization, and
Dynamics Calculations,’’ J. Computational Chemistry 4 #2 (1983), pp. 187–217.

[4] J. E. DENNIS, JR., D. M. GAY, AND R. E. WELSCH, ‘‘Algorithm 573. NL2SOL—An Adap-
tive Nonlinear Least-Squares Algorithm,’’ ACM Trans. Math. Software 7 (1981),
pp. 369–383.

[5] S. I. FELDMAN, D. M. GAY, M. W. MAIMONE, AND N. L. SCHRYER, ‘‘A Fortran-to-C Con-
verter,’’ Computing Science Technical Report No. 149 (1990), AT&T Bell Laboratories,
Murray Hill, NJ.

[6] S. I. FELDMAN AND P. J. WEINBERGER, ‘‘A Portable Fortran 77 Compiler,’’ in Unix
Programmer’s Manual, Volume II, Holt, Rinehart and Winston (1983).

[7] R. FLETCHER, ‘‘Function Minimization Without Evaluating Derivatives—A Review,’’
Comput. J. 8 (1965), pp. 33–41.

[8] R. FOURER, D. M. GAY, AND B. W. KERNIGHAN, ‘‘A Modeling Language for Mathemati-
cal Programming,’’ Management Science 36 #5 (1990), pp. 519–554.

[9] P. A. FOX, A. D. HALL, AND N. L. SCHRYER, ‘‘The PORT Mathematical Subroutine
Library,’’ ACM Trans. Math. Software 4 (June 1978), pp. 104–126.

[10] C. W. FRASER AND D. R. HANSON, ‘‘A Retargetable Compiler for ANSI C,’’ Research
Report CS-TR-303-91 (Feb. 1991), Dept. of Computer Science, Princeton Univ..

[11] D. M. GAY, ‘‘ALGORITHM 611—Subroutines for Unconstrained Minimization Using a
Model/Trust-Region Approach,’’ ACM Trans. Math. Software 9 (1983), pp. 503–524.

[12] R. L. GRAHAM, ‘‘The Largest Small Hexagon,’’ J. Combinatorial Theory (A) 18 (1975),
pp. 165–170.

[13] A. GRIEWANK, ‘‘On Automatic Differentiation,’’ pp. 83–107 in Mathematical Program-
ming, ed. M. Iri and K. Tanabe, Kluwer Academic Publishers (1989).

[14] A. GRIEWANK, D. JUEDES, AND J. SRINIVASAN, ‘‘ADOL-C, a Package for the Automatic
Differentiation of Algorithms Written in C/C++,’’ manuscript (Dec. 1990), Mathematics
and Computer Science Div., Argonne National Laboratory.

August 22, 1991

- 14 -

[15] D. M. HIMMELBLAU, Applied Nonlinear Programming, McGraw-Hill, 1972.

[16] J. J. MORÉ, B. S. GARBOW, AND K. E. HILLSTROM, ‘‘Algorithm 566. FORTRAN Subrou-
tines for Testing Unconstrained Optimization Software,’’ ACM Trans. Math. Software 7 #1
(1981), pp. 136–140.

[17] B. A. MURTAGH, in Advanced Linear Programming: Computation and Practice, McGraw-
Hill, New York (1981).

[18] B. A. MURTAGH AND M. A. SAUNDERS, ‘‘Large-Scale Linearly Constrained Optimiza-
tion,’’ Math. Programming 14 (1978), pp. 41–72.

[19] B. A. MURTAGH AND M. A. SAUNDERS, ‘‘A Projected Lagrangian Algorithm and its Imple-
mentation for Sparse Nonlinear Constraints,’’ Math. Programming Study 16 (1982),
pp. 84–117.

[20] B. A. MURTAGH AND M. A. SAUNDERS, ‘‘MINOS 5.1 User’s Guide,’’ Technical Report
SOL 83-20R (1987), Systems Optimization Laboratory, Stanford University, Stanford,
CA.

[21] B. SPEELPENNING, ‘‘Compiling Fast Partial Derivatives of Functions Given by Algo-
rithms,’’ UIUCDCS-R-80-1002, University of Illinois, 1980.

August 22, 1991

